Limit theorems for a~critical Galton--Watson process with migration
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 3, pp. 523-534
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The critical Galton–Watson process with immigration and emigration is investigated. 
We consider the population of particles which develop according to the critical 
Galton–Watson process with the offspring generating function $f(s)$, and at each moment
$n=0,1,\dots$ either $k$ ($k=0,1,\dots$) particles immigrate in the population with the
probability $p_k$ or $j$ ($j=1,\dots,m$) particles of those present at time $n$ emigrate from the 
population with probability $q_j$, where $m$ is a fixed natural number,
$$
\sum_{k=0}^\infty p_k+\sum_{k=1}^m q_k=1,\qquad q_m>0.
$$
Let $Z_n$ ($n=0,1,\dots$) be the number of particles at time $n$. We suppose that
$$
Z_0=0,\qquad f'(1-)=1,\qquad\sum_{k=1}^\infty kp_k-\sum_{k=1}^m kq_k=0.
$$
The following results are obtained. If
$$
f(0)>0,\qquad B=1/2f''(1-)\infty,\qquad\sum_{k=1}^\infty k^2p_k\infty,
$$
then for some $A_0\in(0,\infty)$
\begin{gather*}
\mathbf P\{Z_n=0\}\sim\frac{A_0}{\log n},\quad\mathbf MZ_n\sim\frac{B_n}{\log n},\quad\mathbf DZ_n\sim\frac{2B^2n^2}{\log n}\quad(n\to\infty),
\\
\lim_{n\to\infty}\mathbf P\left\{\frac{\log Z_n}{\log n}\right\}=x,\qquad x\in[0,1].
\end{gather*}
            
            
            
          
        
      @article{TVP_1980_25_3_a6,
     author = {S. V. Nagaev and L. V. Han},
     title = {Limit theorems for a~critical {Galton--Watson} process with migration},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {523--534},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a6/}
}
                      
                      
                    TY - JOUR AU - S. V. Nagaev AU - L. V. Han TI - Limit theorems for a~critical Galton--Watson process with migration JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1980 SP - 523 EP - 534 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a6/ LA - ru ID - TVP_1980_25_3_a6 ER -
S. V. Nagaev; L. V. Han. Limit theorems for a~critical Galton--Watson process with migration. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 3, pp. 523-534. http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a6/
