Limit theorems for a critical Galton–Watson process with migration
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 3, pp. 523-534
Cet article a éte moissonné depuis la source Math-Net.Ru
The critical Galton–Watson process with immigration and emigration is investigated. We consider the population of particles which develop according to the critical Galton–Watson process with the offspring generating function $f(s)$, and at each moment $n=0,1,\dots$ either $k$ ($k=0,1,\dots$) particles immigrate in the population with the probability $p_k$ or $j$ ($j=1,\dots,m$) particles of those present at time $n$ emigrate from the population with probability $q_j$, where $m$ is a fixed natural number, $$ \sum_{k=0}^\infty p_k+\sum_{k=1}^m q_k=1,\qquad q_m>0. $$ Let $Z_n$ ($n=0,1,\dots$) be the number of particles at time $n$. We suppose that $$ Z_0=0,\qquad f'(1-)=1,\qquad\sum_{k=1}^\infty kp_k-\sum_{k=1}^m kq_k=0. $$ The following results are obtained. If $$ f(0)>0,\qquad B=1/2f''(1-)<\infty,\qquad\sum_{k=1}^\infty k^2p_k<\infty, $$ then for some $A_0\in(0,\infty)$ \begin{gather*} \mathbf P\{Z_n=0\}\sim\frac{A_0}{\log n},\quad\mathbf MZ_n\sim\frac{B_n}{\log n},\quad\mathbf DZ_n\sim\frac{2B^2n^2}{\log n}\quad(n\to\infty), \\ \lim_{n\to\infty}\mathbf P\left\{\frac{\log Z_n}{\log n}<x\right\}=x,\qquad x\in[0,1]. \end{gather*}
@article{TVP_1980_25_3_a6,
author = {S. V. Nagaev and L. V. Han},
title = {Limit theorems for a~critical {Galton{\textendash}Watson} process with migration},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {523--534},
year = {1980},
volume = {25},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a6/}
}
S. V. Nagaev; L. V. Han. Limit theorems for a critical Galton–Watson process with migration. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 3, pp. 523-534. http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a6/