Large deviations for a critical Galton--Watson process
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 3, pp. 490-501
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mu(t)$ ($t=0,1,\dots$) be a Galton–Watson process with $\mu(0)=1$,
$$
F(s)=\mathbf Ms^{\mu(1)},\quad F'(1)=1,\quad 0''(1)\infty,\quad Q(t)=\mathbf P\{\mu(t)>0\}.
$$
We prove that if $F(s)$ is an analytic function in the domain $|s|1+\varepsilon(\varepsilon>0)$ and if
for some integer $N\geqslant 2$
$$
0\frac{x}{t}\ln t\ln_{(N)}t\to\infty\qquad(t\to\infty,\,\ln_1 t=\ln t,\,\ln_{(k+1)}t=\ln_{(k)}\ln t)
$$
then
$$
e^x\mathbf P\{\mu(t)Q(t)>x\mid\mu(t)>0\}\to 1\qquad(t\to\infty).
$$
The local limit theorem on the large deviations is proved too.
@article{TVP_1980_25_3_a3,
author = {G. D. Makarov},
title = {Large deviations for a critical {Galton--Watson} process},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {490--501},
publisher = {mathdoc},
volume = {25},
number = {3},
year = {1980},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a3/}
}
G. D. Makarov. Large deviations for a critical Galton--Watson process. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 3, pp. 490-501. http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a3/