Large deviations for a critical Galton--Watson process
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 3, pp. 490-501

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mu(t)$ ($t=0,1,\dots$) be a Galton–Watson process with $\mu(0)=1$, $$ F(s)=\mathbf Ms^{\mu(1)},\quad F'(1)=1,\quad 0''(1)\infty,\quad Q(t)=\mathbf P\{\mu(t)>0\}. $$ We prove that if $F(s)$ is an analytic function in the domain $|s|1+\varepsilon(\varepsilon>0)$ and if for some integer $N\geqslant 2$ $$ 0\frac{x}{t}\ln t\ln_{(N)}t\to\infty\qquad(t\to\infty,\,\ln_1 t=\ln t,\,\ln_{(k+1)}t=\ln_{(k)}\ln t) $$ then $$ e^x\mathbf P\{\mu(t)Q(t)>x\mid\mu(t)>0\}\to 1\qquad(t\to\infty). $$ The local limit theorem on the large deviations is proved too.
@article{TVP_1980_25_3_a3,
     author = {G. D. Makarov},
     title = {Large deviations for a critical {Galton--Watson} process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {490--501},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a3/}
}
TY  - JOUR
AU  - G. D. Makarov
TI  - Large deviations for a critical Galton--Watson process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1980
SP  - 490
EP  - 501
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a3/
LA  - ru
ID  - TVP_1980_25_3_a3
ER  - 
%0 Journal Article
%A G. D. Makarov
%T Large deviations for a critical Galton--Watson process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1980
%P 490-501
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a3/
%G ru
%F TVP_1980_25_3_a3
G. D. Makarov. Large deviations for a critical Galton--Watson process. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 3, pp. 490-501. http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a3/