On the efficiency of spectral density estimates for stationary process
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 3, pp. 476-489

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of estimating the spectral density of a stationary real-valued stochastic process in discrete time. Under a certain mixing condition we find the optimal (in the sense of asymptotic mean square error) spectrograph estimate and show that this estimate has a mean square error which is considerably less than that of usual spectro ­ graph estimates. We then study a lag time window estimate suggested by A. N. Kolmogorov and show that its mean square error is very close to the optimal one and that this estimate is less sensitive to noise and non-stationary phenomena at remote frequencies. Further, Kolmogorov's estimate turns out to be very well suited for computation by electronic computers.
@article{TVP_1980_25_3_a2,
     author = {I. G. \v{Z}urbenko},
     title = {On the efficiency of spectral density estimates for stationary process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {476--489},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a2/}
}
TY  - JOUR
AU  - I. G. Žurbenko
TI  - On the efficiency of spectral density estimates for stationary process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1980
SP  - 476
EP  - 489
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a2/
LA  - ru
ID  - TVP_1980_25_3_a2
ER  - 
%0 Journal Article
%A I. G. Žurbenko
%T On the efficiency of spectral density estimates for stationary process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1980
%P 476-489
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a2/
%G ru
%F TVP_1980_25_3_a2
I. G. Žurbenko. On the efficiency of spectral density estimates for stationary process. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 3, pp. 476-489. http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a2/