On the construction and limit behaviour of a~multiple stochastic integral for the diffusion process
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 3, pp. 606-613

Voir la notice de l'article provenant de la source Math-Net.Ru

We give the definition of the multiple integral $$ I_f=\int_0^T\dotsi\int_0^Tf(\xi(t_1),\dots,\xi(t_m))\,d\xi(t_1)\dots d\xi(t_m) $$ where $\xi(t)$ is the solution of the Ito's diffusion equation $$ d\xi(t)=a(t,\xi(t))\,dt+\sigma(t,\xi(t))\,dw(t). $$ The asymptotic distributions of the integral $I_t$ are investigated.
@article{TVP_1980_25_3_a16,
     author = {G. L. Kulini\v{c} and Le Thieng Huong},
     title = {On the construction and limit behaviour of a~multiple stochastic integral for the diffusion process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {606--613},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a16/}
}
TY  - JOUR
AU  - G. L. Kulinič
AU  - Le Thieng Huong
TI  - On the construction and limit behaviour of a~multiple stochastic integral for the diffusion process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1980
SP  - 606
EP  - 613
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a16/
LA  - ru
ID  - TVP_1980_25_3_a16
ER  - 
%0 Journal Article
%A G. L. Kulinič
%A Le Thieng Huong
%T On the construction and limit behaviour of a~multiple stochastic integral for the diffusion process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1980
%P 606-613
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a16/
%G ru
%F TVP_1980_25_3_a16
G. L. Kulinič; Le Thieng Huong. On the construction and limit behaviour of a~multiple stochastic integral for the diffusion process. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 3, pp. 606-613. http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a16/