On the construction and limit behaviour of a multiple stochastic integral for the diffusion process
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 3, pp. 606-613
Cet article a éte moissonné depuis la source Math-Net.Ru
We give the definition of the multiple integral $$ I_f=\int_0^T\dotsi\int_0^Tf(\xi(t_1),\dots,\xi(t_m))\,d\xi(t_1)\dots d\xi(t_m) $$ where $\xi(t)$ is the solution of the Ito's diffusion equation $$ d\xi(t)=a(t,\xi(t))\,dt+\sigma(t,\xi(t))\,dw(t). $$ The asymptotic distributions of the integral $I_t$ are investigated.
@article{TVP_1980_25_3_a16,
author = {G. L. Kulini\v{c} and Le Thieng Huong},
title = {On the construction and limit behaviour of a~multiple stochastic integral for the diffusion process},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {606--613},
year = {1980},
volume = {25},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a16/}
}
TY - JOUR AU - G. L. Kulinič AU - Le Thieng Huong TI - On the construction and limit behaviour of a multiple stochastic integral for the diffusion process JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1980 SP - 606 EP - 613 VL - 25 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a16/ LA - ru ID - TVP_1980_25_3_a16 ER -
%0 Journal Article %A G. L. Kulinič %A Le Thieng Huong %T On the construction and limit behaviour of a multiple stochastic integral for the diffusion process %J Teoriâ veroâtnostej i ee primeneniâ %D 1980 %P 606-613 %V 25 %N 3 %U http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a16/ %G ru %F TVP_1980_25_3_a16
G. L. Kulinič; Le Thieng Huong. On the construction and limit behaviour of a multiple stochastic integral for the diffusion process. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 3, pp. 606-613. http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a16/