A uniform asymptotic renewal theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 3, pp. 597-600

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $x(t)=x(t,y(\,\cdot\,),F(\,\cdot\,))$ (for probability distribution $F$ on $R_+$ and bounded function $y$) be the solution of the renewal equation $$ x(t)=y(t)+\int_{[0,t)}x(t-s)F(ds). $$ Denote by $\mathfrak K$ a class of distributions $F$ such that each $F\in\mathfrak K$ has an absolutely continuous component $G$ with uniformly (over $\mathfrak K$) positive total mass and the corresponding class of densities $\frac{\partial G}{\partial t}$ is uniformly bounded on $R_+$ and relatively compact in $L_1 (R_+)$. If nondecreasing function $\varphi$ on $R_+$ is such that $\varphi(t+s)\leqslant\varphi(t)\varphi(s)$, $\lim_{t\to\infty}\varphi(t+s)/\varphi(t)=1$, if $F\in\mathfrak K$ and the functions $$ \int_{[t,\infty)}\varphi(s)F([s,\infty))\,ds,\quad\varphi(t)y(t),\quad\varphi(t)\int_{[t,\infty)}y(s)\,ds $$ converge uniformly to 0 as $t\to\infty$, then $$ x(t)-\biggl(\int_{R_+}sF\,(ds)\biggr)^{-1}\int_{R_+}y(s)\,ds=o(1/\varphi(t)),\qquad t\to\infty, $$ uniformly in $F$ and $y$. The uniform exponential asymptotics of $x(t)$ is obtained also.
@article{TVP_1980_25_3_a13,
     author = {N. V. Karta\v{s}ov},
     title = {A uniform asymptotic renewal theorem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {597--600},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a13/}
}
TY  - JOUR
AU  - N. V. Kartašov
TI  - A uniform asymptotic renewal theorem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1980
SP  - 597
EP  - 600
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a13/
LA  - ru
ID  - TVP_1980_25_3_a13
ER  - 
%0 Journal Article
%A N. V. Kartašov
%T A uniform asymptotic renewal theorem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1980
%P 597-600
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a13/
%G ru
%F TVP_1980_25_3_a13
N. V. Kartašov. A uniform asymptotic renewal theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 3, pp. 597-600. http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a13/