A uniform asymptotic renewal theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 3, pp. 597-600
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $x(t)=x(t,y(\,\cdot\,),F(\,\cdot\,))$ (for probability distribution $F$ on $R_+$ and
bounded function $y$) be the solution of the renewal equation
$$
x(t)=y(t)+\int_{[0,t)}x(t-s)F(ds).
$$
Denote by $\mathfrak K$ a class of distributions $F$ such that each $F\in\mathfrak K$
has an absolutely continuous component $G$ with uniformly (over $\mathfrak K$) positive
total mass and the corresponding class of densities $\frac{\partial G}{\partial t}$ is uniformly
bounded on $R_+$ and relatively compact in $L_1 (R_+)$.
If nondecreasing function $\varphi$ on $R_+$ is such that $\varphi(t+s)\leqslant\varphi(t)\varphi(s)$,
$\lim_{t\to\infty}\varphi(t+s)/\varphi(t)=1$, if $F\in\mathfrak K$ and the functions
$$
\int_{[t,\infty)}\varphi(s)F([s,\infty))\,ds,\quad\varphi(t)y(t),\quad\varphi(t)\int_{[t,\infty)}y(s)\,ds
$$
converge uniformly to 0 as $t\to\infty$, then
$$
x(t)-\biggl(\int_{R_+}sF\,(ds)\biggr)^{-1}\int_{R_+}y(s)\,ds=o(1/\varphi(t)),\qquad t\to\infty,
$$
uniformly in $F$ and $y$. The uniform exponential asymptotics of $x(t)$ is obtained also.
@article{TVP_1980_25_3_a13,
author = {N. V. Karta\v{s}ov},
title = {A uniform asymptotic renewal theorem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {597--600},
publisher = {mathdoc},
volume = {25},
number = {3},
year = {1980},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a13/}
}
N. V. Kartašov. A uniform asymptotic renewal theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 3, pp. 597-600. http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a13/