Limit distribution for a~random walk with absorption
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 3, pp. 588-592
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\xi_1,\xi_2,\dots$ are independent identically distributed random variables, $\mathbf M\xi_1=0$,
$\mathbf D\xi_1=1$ and
$$
S_n=n^{-1/2}(\xi_1+\dots+\xi_n),\qquad\nu=\min\{n:S_n0\}.
$$
We show that
$$
\mathbf P\{S_\nu\mid\nu>n\}\to V(x),\qquad\mathbf P\{S_n\mid\nu>n\}\to 1-e^{-x^2/2}.
$$
            
            
            
          
        
      @article{TVP_1980_25_3_a11,
     author = {A. V. Pe\v{c}inkin},
     title = {Limit distribution for a~random walk with absorption},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {588--592},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a11/}
}
                      
                      
                    A. V. Pečinkin. Limit distribution for a~random walk with absorption. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 3, pp. 588-592. http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a11/
