An error of the Monte-Carlo calculation of the integral by means of a physical generator of random codes
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 2, pp. 407-415
Cet article a éte moissonné depuis la source Math-Net.Ru
An error of the calculation of a simple integral $\overline\varphi=\int_0^1\varphi\,dx$ by the method of independent tests is estimated in the case when a sequential physical generator of stationary random binary codes with independent digits is used as a source of the random numbers. The imperfection of such a generator can be determined by the value $\varepsilon=P(0)-P(1)$, $P(0)$ and $P(1)$ being the probabilities of 0 and 1 in the code produced. The error mentioned is estimated by the value $$ S(v)=\sup\{\Delta\varphi/\sqrt{\mathbf D\varphi}:\ \varphi\in G(v)\}, $$ where $\Delta\varphi=\int_0^1\varphi\,dF-\overline{\varphi}$, $\mathbf D\varphi=\int_0^1(\varphi-\overline{\varphi})^2\,dx$, $F$ is the actual distribution function of random numbers (if $\varepsilon=0$ then $F(x)=x$, $\Delta\varphi=0$ and $S=0$) and $G(v)=\{\varphi:\bigvee_0^1\varphi/\sqrt{\mathbf D\varphi}\le v\}$ is the class of functions with a finite standartized variation. We prove the relation $\lim_{\varepsilon\to\infty}S(v)/|\,\varepsilon\,|=S^*(v)$ and calculate the function $S^*$. The results may be applied for determining the permissible values of the parameter $\varepsilon$ of the random code generator's imperfection.
@article{TVP_1980_25_2_a19,
author = {G. A. Kozlov},
title = {An error of the {Monte-Carlo} calculation of the integral by means of a~physical generator of random codes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {407--415},
year = {1980},
volume = {25},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_2_a19/}
}
TY - JOUR AU - G. A. Kozlov TI - An error of the Monte-Carlo calculation of the integral by means of a physical generator of random codes JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1980 SP - 407 EP - 415 VL - 25 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_1980_25_2_a19/ LA - ru ID - TVP_1980_25_2_a19 ER -
G. A. Kozlov. An error of the Monte-Carlo calculation of the integral by means of a physical generator of random codes. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 2, pp. 407-415. http://geodesic.mathdoc.fr/item/TVP_1980_25_2_a19/