On a criterion of weak dependence
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 2, pp. 374-381
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\xi_t$, $t\in Z^1$, be a stationary real-valued random process and let $\mathfrak{M}_a^b$, $-\infty\le a$, be the $\sigma$-algebra generated by the random variables $\xi_t$, $a\le t\le b$. We say that
the process $\xi_t$, $t\in Z^1$, satisfies the $\beta$-mixing condition if for any $A\in\mathfrak{M}_{-\infty}^+$,
$B\in\mathbf W\mathfrak{M}_{t+\tau}^\infty$, $\tau>0$, $\tau\in Z^1$,
\begin{equation}
|\mathbf P(AB)-\mathbf P(A)\mathbf P(B)|\le\beta(\tau)\mathbf P(A)\mathbf P(B),\qquad\beta(\tau)\to 0,\tau\to\infty.
\end{equation}
It is shown that the Gibbs random process under some conditions on the potential satisfies
the criterion (1). The main result of the paper is the following
\smallskip
Theorem. If the process $\xi_t$, $t\in Z^1$, satisfies the condition (1), $\sigma_n^2=\mathbf D(\xi_0+\xi_1+\dots+\xi_n)\ge C_n$,
$0$, and $\mathbf M\xi_0^2\infty$, then
$$
\lim_{n\to\infty}\mathbf P\left\{\frac{1}{\sigma_n}\sum_{t=m}^{n+m}(\xi_t-\mathbf M\xi_t)\alpha\right\}=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\alpha e^{-t^2/2}\,dt,\qquad m\in Z^1.
$$
            
            
            
          
        
      @article{TVP_1980_25_2_a14,
     author = {B. S. Nahapetiyan},
     title = {On a criterion of weak dependence},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {374--381},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_2_a14/}
}
                      
                      
                    B. S. Nahapetiyan. On a criterion of weak dependence. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 2, pp. 374-381. http://geodesic.mathdoc.fr/item/TVP_1980_25_2_a14/
