On a criterion of weak dependence
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 2, pp. 374-381

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi_t$, $t\in Z^1$, be a stationary real-valued random process and let $\mathfrak{M}_a^b$, $-\infty\le a$, be the $\sigma$-algebra generated by the random variables $\xi_t$, $a\le t\le b$. We say that the process $\xi_t$, $t\in Z^1$, satisfies the $\beta$-mixing condition if for any $A\in\mathfrak{M}_{-\infty}^+$, $B\in\mathbf W\mathfrak{M}_{t+\tau}^\infty$, $\tau>0$, $\tau\in Z^1$, \begin{equation} |\mathbf P(AB)-\mathbf P(A)\mathbf P(B)|\le\beta(\tau)\mathbf P(A)\mathbf P(B),\qquad\beta(\tau)\to 0,\tau\to\infty. \end{equation} It is shown that the Gibbs random process under some conditions on the potential satisfies the criterion (1). The main result of the paper is the following \smallskip Theorem. If the process $\xi_t$, $t\in Z^1$, satisfies the condition (1), $\sigma_n^2=\mathbf D(\xi_0+\xi_1+\dots+\xi_n)\ge C_n$, $0$, and $\mathbf M\xi_0^2\infty$, then $$ \lim_{n\to\infty}\mathbf P\left\{\frac{1}{\sigma_n}\sum_{t=m}^{n+m}(\xi_t-\mathbf M\xi_t)\alpha\right\}=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\alpha e^{-t^2/2}\,dt,\qquad m\in Z^1. $$
@article{TVP_1980_25_2_a14,
     author = {B. S. Nahapetiyan},
     title = {On a criterion of weak dependence},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {374--381},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_2_a14/}
}
TY  - JOUR
AU  - B. S. Nahapetiyan
TI  - On a criterion of weak dependence
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1980
SP  - 374
EP  - 381
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1980_25_2_a14/
LA  - ru
ID  - TVP_1980_25_2_a14
ER  - 
%0 Journal Article
%A B. S. Nahapetiyan
%T On a criterion of weak dependence
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1980
%P 374-381
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1980_25_2_a14/
%G ru
%F TVP_1980_25_2_a14
B. S. Nahapetiyan. On a criterion of weak dependence. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 2, pp. 374-381. http://geodesic.mathdoc.fr/item/TVP_1980_25_2_a14/