Stable subspaces and a~theorem on a~decomposition of martingales
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 2, pp. 369-374
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $m=(m_t)$, $t\in R_+$, be an $n$-dimensional continuous local martingale, $\mu(\omega,dt,dx)$
 be an integervalued random measure on a $R_+\times E$ and $\nu(\omega,dt,dx)$ be its dual predictable
projection. We prove that every martingale $X\in H^q$, $q\in[1,\infty[$, possesses a unique decomposition of the form
$$
X_t-X_0=\int_0^tf(s)\,dm_s+\int_0^t\int_Eg(s,x)(\mu-\nu)(ds,dx)+\int_0^t\int_Eh(s,x)\mu(ds,dx)+X_t'.
$$
All additive terms of the rigth hand side belong to the space $H^q$ and the process $X'$ is
orthogonal to $m$ and hasn't jumps on the support of $\mu$.
			
            
            
            
          
        
      @article{TVP_1980_25_2_a13,
     author = {L. I. Gal'\v{c}uk},
     title = {Stable subspaces and a~theorem on a~decomposition of martingales},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {369--374},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_2_a13/}
}
                      
                      
                    L. I. Gal'čuk. Stable subspaces and a~theorem on a~decomposition of martingales. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 2, pp. 369-374. http://geodesic.mathdoc.fr/item/TVP_1980_25_2_a13/
