Stable subspaces and a theorem on a decomposition of martingales
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 2, pp. 369-374
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $m=(m_t)$, $t\in R_+$, be an $n$-dimensional continuous local martingale, $\mu(\omega,dt,dx)$ be an integervalued random measure on a $R_+\times E$ and $\nu(\omega,dt,dx)$ be its dual predictable projection. We prove that every martingale $X\in H^q$, $q\in[1,\infty[$, possesses a unique decomposition of the form $$ X_t-X_0=\int_0^tf(s)\,dm_s+\int_0^t\int_Eg(s,x)(\mu-\nu)(ds,dx)+\int_0^t\int_Eh(s,x)\mu(ds,dx)+X_t'. $$ All additive terms of the rigth hand side belong to the space $H^q$ and the process $X'$ is orthogonal to $m$ and hasn't jumps on the support of $\mu$.
@article{TVP_1980_25_2_a13,
author = {L. I. Gal'\v{c}uk},
title = {Stable subspaces and a~theorem on a~decomposition of martingales},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {369--374},
year = {1980},
volume = {25},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_2_a13/}
}
L. I. Gal'čuk. Stable subspaces and a theorem on a decomposition of martingales. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 2, pp. 369-374. http://geodesic.mathdoc.fr/item/TVP_1980_25_2_a13/