Brownian motion Markovian stopping times with given laws
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 2, pp. 366-369
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $w_t$, $t\in[0,\infty)$, be the Brownian motion. For any probability law $\mu$ on $(0,\infty]$, there exists a subset $B$ of $[-\infty,\infty]\times(0,\infty]$ such that the distribution of the stopping time $$ \tau=\inf\{t>0:(w_t,t)\in B\} $$ coincides with $\mu$.
@article{TVP_1980_25_2_a12,
author = {S. V. Anulova},
title = {Brownian motion {Markovian} stopping times with given laws},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {366--369},
year = {1980},
volume = {25},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_2_a12/}
}
S. V. Anulova. Brownian motion Markovian stopping times with given laws. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 2, pp. 366-369. http://geodesic.mathdoc.fr/item/TVP_1980_25_2_a12/