Brownian motion Markovian stopping times with given laws
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 2, pp. 366-369 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $w_t$, $t\in[0,\infty)$, be the Brownian motion. For any probability law $\mu$ on $(0,\infty]$, there exists a subset $B$ of $[-\infty,\infty]\times(0,\infty]$ such that the distribution of the stopping time $$ \tau=\inf\{t>0:(w_t,t)\in B\} $$ coincides with $\mu$.
@article{TVP_1980_25_2_a12,
     author = {S. V. Anulova},
     title = {Brownian motion {Markovian} stopping times with given laws},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {366--369},
     year = {1980},
     volume = {25},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_2_a12/}
}
TY  - JOUR
AU  - S. V. Anulova
TI  - Brownian motion Markovian stopping times with given laws
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1980
SP  - 366
EP  - 369
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_1980_25_2_a12/
LA  - ru
ID  - TVP_1980_25_2_a12
ER  - 
%0 Journal Article
%A S. V. Anulova
%T Brownian motion Markovian stopping times with given laws
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1980
%P 366-369
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_1980_25_2_a12/
%G ru
%F TVP_1980_25_2_a12
S. V. Anulova. Brownian motion Markovian stopping times with given laws. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 2, pp. 366-369. http://geodesic.mathdoc.fr/item/TVP_1980_25_2_a12/