A converse to the law of the iterated logarithm for random walk
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 2, pp. 364-366

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{S_n\}$ be a random walk with independent increments. Then $\mathbf{E}S_1=0$, $\mathbf{E}S_1^2=1$ iff $$ \limsup_{n\to\infty}\frac{S_n}{\sqrt{2n\log\log n}}=1\qquad\text{almost surely.} $$
@article{TVP_1980_25_2_a11,
     author = {A. I. Martikaǐnen},
     title = {A converse to the law of the iterated logarithm for random walk},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {364--366},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_2_a11/}
}
TY  - JOUR
AU  - A. I. Martikaǐnen
TI  - A converse to the law of the iterated logarithm for random walk
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1980
SP  - 364
EP  - 366
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1980_25_2_a11/
LA  - ru
ID  - TVP_1980_25_2_a11
ER  - 
%0 Journal Article
%A A. I. Martikaǐnen
%T A converse to the law of the iterated logarithm for random walk
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1980
%P 364-366
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1980_25_2_a11/
%G ru
%F TVP_1980_25_2_a11
A. I. Martikaǐnen. A converse to the law of the iterated logarithm for random walk. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 2, pp. 364-366. http://geodesic.mathdoc.fr/item/TVP_1980_25_2_a11/