A converse to the law of the iterated logarithm for random walk
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 2, pp. 364-366
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\{S_n\}$ be a random walk with independent increments. Then $\mathbf{E}S_1=0$, $\mathbf{E}S_1^2=1$ iff
$$
\limsup_{n\to\infty}\frac{S_n}{\sqrt{2n\log\log n}}=1\qquad\text{almost surely.}
$$
@article{TVP_1980_25_2_a11,
author = {A. I. Martikaǐnen},
title = {A converse to the law of the iterated logarithm for random walk},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {364--366},
publisher = {mathdoc},
volume = {25},
number = {2},
year = {1980},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_2_a11/}
}
A. I. Martikaǐnen. A converse to the law of the iterated logarithm for random walk. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 2, pp. 364-366. http://geodesic.mathdoc.fr/item/TVP_1980_25_2_a11/