An $\varepsilon$-optimal control of finite Markov chain with average
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 1, pp. 71-82
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Discrete time Markov decition chain with average reward criterion is considered.
It is proved that if the state space is finite and the sets of actions are measurable subsets
of Polish space, then there exist non-randomized Markov $\varepsilon$-optimal policies. An example
showing that there exists a Markov decition chain with countable state space and finite
sets of actions such that randomized Markov $\varepsilon$-optimal policies for this chain don't
exist is constructed.
			
            
            
            
          
        
      @article{TVP_1980_25_1_a5,
     author = {E. A. Feǐnberg},
     title = {An $\varepsilon$-optimal control of finite {Markov} chain with average},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {71--82},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a5/}
}
                      
                      
                    E. A. Feǐnberg. An $\varepsilon$-optimal control of finite Markov chain with average. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 1, pp. 71-82. http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a5/
