On a non-parametric test for homogeneity of several
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 1, pp. 197-200
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $(x_{i1},\dots,x_{in_i})$, $i=\overline{1,m}$ be independent samples of sizes $n_1,\dots,n_m$ from continuous distribution functions $F_1(x),\dots,F_m(x)$. For testing the hypothesis $H_0$: $F_1(x)=\dots=F_m(x)$, tests based on the statistics
$$
S(n_1,\dots,n_m)=\sup_{-\infty\infty}\biggl(\sum_{i=1}^m c_i\biggl[F_{n_i}(x)-\biggl(\sum_{i=1}^m c_i F_{n_i}(x)\biggr)/\sum_{i=1}^m c_i\biggr]^2\biggr)^{1/2}
$$
are considered where $F_{n_1}(x),\dots,F_{n_m}(x)$ are the empirical distribution functions of the
samples and $c_1,\dots,c_m$  arbitrary positive numbers. Numerical methods for calculation
of exact and limiting distributions of $S(n_1,\dots,n_m)$ under $H_0$ are described.
			
            
            
            
          
        
      @article{TVP_1980_25_1_a23,
     author = {O. M. \v{C}ernomordik},
     title = {On a non-parametric test for homogeneity of several},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {197--200},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a23/}
}
                      
                      
                    O. M. Černomordik. On a non-parametric test for homogeneity of several. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 1, pp. 197-200. http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a23/
