On sequential estimation under the conditions of the local asymptotic normality
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 1, pp. 30-43

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathscr E_n=\{\mathbf P_{n,\theta};\theta\in\Theta\}$ be a sequence of families of probability measures and $l(x)$ be a loss function such that $l(x)=l(-x)$, $l(x)\ge l(z)$ if $|x|\ge|z|$, $$ \psi(\mu)=\int l(x/\mu)e^{-x^2/2}\,dx\infty\qquad\text{and}\qquad\psi(\mu)\to 0,\quad \mu\to\infty. $$ Theorem 1. {\it Let $\mathscr E_n$ be locally asymptotically normal at the point $t\in\Theta$ and $(\{T_m^{(n)}\},\tau_n)$ be a sequence of sequential estimation procedures. Then for arbitrary positive constants $\gamma$, $\varepsilon$, $\delta$ there exist $b_0(\gamma,\varepsilon,\delta)$ and $n_0(\gamma,\varepsilon,\delta,b)$ such that for $b\ge b_0(\gamma,\varepsilon,\delta)$ and $n\ge n_0(\gamma,\varepsilon,\delta,b)$ inequality (2) is valid.} As a consequence of this theorem we show that if $\tilde l(1/\mu)$ is convex function of $\mu$ and (3) holds, then the inequality (4) is valid. Asymptotical normality and local asymptotical minimax properties of maximum likelihood, Bayes and generalized Bayes estimates are established.
@article{TVP_1980_25_1_a2,
     author = {S. Yu. Efroǐmovi\v{c}},
     title = {On sequential estimation under the conditions of the local asymptotic normality},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {30--43},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a2/}
}
TY  - JOUR
AU  - S. Yu. Efroǐmovič
TI  - On sequential estimation under the conditions of the local asymptotic normality
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1980
SP  - 30
EP  - 43
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a2/
LA  - ru
ID  - TVP_1980_25_1_a2
ER  - 
%0 Journal Article
%A S. Yu. Efroǐmovič
%T On sequential estimation under the conditions of the local asymptotic normality
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1980
%P 30-43
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a2/
%G ru
%F TVP_1980_25_1_a2
S. Yu. Efroǐmovič. On sequential estimation under the conditions of the local asymptotic normality. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 1, pp. 30-43. http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a2/