On sequential estimation under the conditions of the local asymptotic normality
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 1, pp. 30-43
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\mathscr E_n=\{\mathbf P_{n,\theta};\theta\in\Theta\}$ be a sequence of families of probability measures and $l(x)$ be a loss function such that $l(x)=l(-x)$, $l(x)\ge l(z)$ if $|x|\ge|z|$,
$$
\psi(\mu)=\int l(x/\mu)e^{-x^2/2}\,dx\infty\qquad\text{and}\qquad\psi(\mu)\to 0,\quad \mu\to\infty.
$$ Theorem 1. {\it Let $\mathscr E_n$ be locally asymptotically normal at the point $t\in\Theta$ and $(\{T_m^{(n)}\},\tau_n)$ be a sequence of sequential estimation procedures. Then for arbitrary positive constants
$\gamma$, $\varepsilon$, $\delta$ there exist $b_0(\gamma,\varepsilon,\delta)$ and 
$n_0(\gamma,\varepsilon,\delta,b)$ such that for $b\ge b_0(\gamma,\varepsilon,\delta)$ and 
$n\ge n_0(\gamma,\varepsilon,\delta,b)$ inequality (2) is valid.}
As a consequence of this theorem we show that if $\tilde l(1/\mu)$ is convex function of $\mu$ and
(3) holds, then the inequality (4) is valid.
Asymptotical normality and local asymptotical minimax properties of maximum
likelihood, Bayes and generalized Bayes estimates are established.
			
            
            
            
          
        
      @article{TVP_1980_25_1_a2,
     author = {S. Yu. Efroǐmovi\v{c}},
     title = {On sequential estimation under the conditions of the local asymptotic normality},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {30--43},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a2/}
}
                      
                      
                    TY - JOUR AU - S. Yu. Efroǐmovič TI - On sequential estimation under the conditions of the local asymptotic normality JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1980 SP - 30 EP - 43 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a2/ LA - ru ID - TVP_1980_25_1_a2 ER -
S. Yu. Efroǐmovič. On sequential estimation under the conditions of the local asymptotic normality. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 1, pp. 30-43. http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a2/
