Characterization of certain classes
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 1, pp. 162-167

Voir la notice de l'article provenant de la source Math-Net.Ru

The following assertions are proved. 1) The classes of $\gamma$-summing and $\gamma$-radonifying operators with values in a Banach space $X$ coincide iff $X$ does not contain isomorphic copies of $c_0$. 2) An operator $T$ from a Hilbert space into a Banach space of type 2 is $\gamma$-summing iff $T^*$ is absolutely 2-summing. 3) The covariance operator of a strong second order tight measure on a Banach space is nuclear. 4) If $X$ is a Banach space, then every positive symmetric and nuclear linear operator from $X^*$ into $X$ is Gaussian covariance iff $X$ is of type 2.
@article{TVP_1980_25_1_a16,
     author = {W. Linde and V. I. Tarieladze and S. A. \v{C}obanyan},
     title = {Characterization of certain classes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {162--167},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a16/}
}
TY  - JOUR
AU  - W. Linde
AU  - V. I. Tarieladze
AU  - S. A. Čobanyan
TI  - Characterization of certain classes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1980
SP  - 162
EP  - 167
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a16/
LA  - ru
ID  - TVP_1980_25_1_a16
ER  - 
%0 Journal Article
%A W. Linde
%A V. I. Tarieladze
%A S. A. Čobanyan
%T Characterization of certain classes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1980
%P 162-167
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a16/
%G ru
%F TVP_1980_25_1_a16
W. Linde; V. I. Tarieladze; S. A. Čobanyan. Characterization of certain classes. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 1, pp. 162-167. http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a16/