A counterexample to the hypothesis on the $H^\infty$ to be dense in the space BMO
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 1, pp. 154-157

Voir la notice de l'article provenant de la source Math-Net.Ru

In the probability space $(\Omega,\mathscr F,\mathbf P)$ we consider a discrete increasing family of $\sigma$-fields $(\mathscr F_n)$ satisfying special conditions. By means of the norm (which is equivalent to that of the space BMO of martingales) we obtain an example of a martingale which belongs to BMO but cannot be approximated (in the BMO-norm) by elements of $H^\infty$.
@article{TVP_1980_25_1_a14,
     author = {I. V. Pavlov},
     title = {A counterexample to the hypothesis on the $H^\infty$ to be dense in the space {BMO}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {154--157},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a14/}
}
TY  - JOUR
AU  - I. V. Pavlov
TI  - A counterexample to the hypothesis on the $H^\infty$ to be dense in the space BMO
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1980
SP  - 154
EP  - 157
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a14/
LA  - ru
ID  - TVP_1980_25_1_a14
ER  - 
%0 Journal Article
%A I. V. Pavlov
%T A counterexample to the hypothesis on the $H^\infty$ to be dense in the space BMO
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1980
%P 154-157
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a14/
%G ru
%F TVP_1980_25_1_a14
I. V. Pavlov. A counterexample to the hypothesis on the $H^\infty$ to be dense in the space BMO. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 1, pp. 154-157. http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a14/