On the continuity criteria for Markov processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 1, pp. 142-149
Voir la notice de l'article provenant de la source Math-Net.Ru
We give some criteria and sufficient conditions for the continuity of Markov processes. For example, let $E$ be a locally compact separable metric space and $X$ be a right continuous Markov process on $E$. Suppose the resolvent of $X$ is absolutely continuous in respect to a Radon measure $\mu$, and our condition (B) is fulfilled. If the assertion (10) is valid for any continuous functions $f$ and $g$ with disjoint compact supports, then the process $X$ is continuous almost surely (see Theorem 4). A special case of this result may be found in [1].
@article{TVP_1980_25_1_a12,
author = {M. G. \v{S}ur},
title = {On the continuity criteria for {Markov} processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {142--149},
publisher = {mathdoc},
volume = {25},
number = {1},
year = {1980},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a12/}
}
M. G. Šur. On the continuity criteria for Markov processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 1, pp. 142-149. http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a12/