On the continuity criteria for Markov processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 1, pp. 142-149

Voir la notice de l'article provenant de la source Math-Net.Ru

We give some criteria and sufficient conditions for the continuity of Markov processes. For example, let $E$ be a locally compact separable metric space and $X$ be a right continuous Markov process on $E$. Suppose the resolvent of $X$ is absolutely continuous in respect to a Radon measure $\mu$, and our condition (B) is fulfilled. If the assertion (10) is valid for any continuous functions $f$ and $g$ with disjoint compact supports, then the process $X$ is continuous almost surely (see Theorem 4). A special case of this result may be found in [1].
@article{TVP_1980_25_1_a12,
     author = {M. G. \v{S}ur},
     title = {On the continuity criteria for {Markov} processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {142--149},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a12/}
}
TY  - JOUR
AU  - M. G. Šur
TI  - On the continuity criteria for Markov processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1980
SP  - 142
EP  - 149
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a12/
LA  - ru
ID  - TVP_1980_25_1_a12
ER  - 
%0 Journal Article
%A M. G. Šur
%T On the continuity criteria for Markov processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1980
%P 142-149
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a12/
%G ru
%F TVP_1980_25_1_a12
M. G. Šur. On the continuity criteria for Markov processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 1, pp. 142-149. http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a12/