On the measurability of stochastic processes
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 1, pp. 140-142
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider a stochastic process $X_t(\omega)$, $t\ge0$, defined on the probability space
$(\Omega,\mathscr F,\mathbf P)$ and investigate the conditions under which there exists measurable, progressively measurable or predictable modification of the process.
			
            
            
            
          
        
      @article{TVP_1980_25_1_a11,
     author = {A. V. Skorohod},
     title = {On the measurability of stochastic processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {140--142},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a11/}
}
                      
                      
                    A. V. Skorohod. On the measurability of stochastic processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 1, pp. 140-142. http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a11/
