On the measurability of stochastic processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 1, pp. 140-142

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a stochastic process $X_t(\omega)$, $t\ge0$, defined on the probability space $(\Omega,\mathscr F,\mathbf P)$ and investigate the conditions under which there exists measurable, progressively measurable or predictable modification of the process.
@article{TVP_1980_25_1_a11,
     author = {A. V. Skorohod},
     title = {On the measurability of stochastic processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {140--142},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a11/}
}
TY  - JOUR
AU  - A. V. Skorohod
TI  - On the measurability of stochastic processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1980
SP  - 140
EP  - 142
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a11/
LA  - ru
ID  - TVP_1980_25_1_a11
ER  - 
%0 Journal Article
%A A. V. Skorohod
%T On the measurability of stochastic processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1980
%P 140-142
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a11/
%G ru
%F TVP_1980_25_1_a11
A. V. Skorohod. On the measurability of stochastic processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 1, pp. 140-142. http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a11/