Asymptotic behaviour of partial densities and their derivatives
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 1, pp. 3-17
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			If $p(u_1,\dots,u_k)$ be a $k$-variate density then we call partial densities the functions
of a part of variables $u_1,\dots,u_k$ when remaining variables are fixed.
Let $(Y_{i0},Y_{1i},\dots,Y_{pi})$ for $i=1,\dots,n$ be i.i.d. random $(p+1)$-vectors,
$$
T_{nl}=n^{-1/2}\sum_{i=1}^nY_{li},\qquad l=0,1,\dots,p.
$$
Denote by $p_n(u_0,u_1,\dots,u_p)$ the density of 
$(T_{n0},T_{n1},\dots,T_{np})$, let for
$\nu=0,1,\dots$
$$
p_n^{(\nu)}(u_0,u_1,\dots,u_p)=(\partial/\partial u_0)^\nu p_n(u_0,u_1,\dots,u_p).
$$
Given $p_1$, $0\le p_1$, let $\mathbf u_1=(u_0,\dots,u_{p_1})$,
$\mathbf u_2=(u_{p_1+1},\dots,u_{p})$,
$$
q_{n,\nu}(\mathbf u_2)=\sup[|p_n^{\nu}(\mathbf u_1,\mathbf u_2)|;\mathbf u_i\in R^{p_1+1}].
$$ It is proved under certain conditions that $q_{n,\nu}(\mathbf u_2)$ in some respects behaves like a density function. Namely, for any $\nu=0,1,\dots$
$$
\int_{R^{p-p_1}}q_{n,\nu}(\mathbf u_2)\,d\mathbf u_2\le C\infty.
$$
Moreover, for an arbitrary $l_1$, $p_1+1\le l_1\le p$, consider the function
$$
Q_{n,\nu}(z)=\int_{u_{l_1}>z}q_{n,\nu}(\mathbf u_2)\,d\mathbf u_2.
$$
We obtain an upper bound for $Q_{n,\nu}(z)$ similar to that for $\mathbf P\{T_{n,l_1}>z\}$.
If the distribution of $(Y_{01},\dots,Y_{p1})$ satisfies the Cramér's condition (C) the above stated
results hold for appropriately smoothed version of $T_{n0},\dots,T_{np}$.
			
            
            
            
          
        
      @article{TVP_1980_25_1_a0,
     author = {D. M. \v{C}ibisov},
     title = {Asymptotic behaviour of partial densities and their derivatives},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a0/}
}
                      
                      
                    D. M. Čibisov. Asymptotic behaviour of partial densities and their derivatives. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 1, pp. 3-17. http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a0/
