On the convergence of infinite products of independent random linear operators in a Hilbert space
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 4, pp. 808-813 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The first two theorems of the paper give simple sufficient conditions for the convergence with probability 1 of the products named in the title. The third theorem presents necessary and sufficient conditions for convergence and resembles the well-known Kolmogorov's theorem on three series.
@article{TVP_1979_24_4_a9,
     author = {T. {\CYRA}. Skorohod},
     title = {On the convergence of infinite products of independent random linear operators in {a~Hilbert} space},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {808--813},
     year = {1979},
     volume = {24},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_4_a9/}
}
TY  - JOUR
AU  - T. А. Skorohod
TI  - On the convergence of infinite products of independent random linear operators in a Hilbert space
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1979
SP  - 808
EP  - 813
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_1979_24_4_a9/
LA  - ru
ID  - TVP_1979_24_4_a9
ER  - 
%0 Journal Article
%A T. А. Skorohod
%T On the convergence of infinite products of independent random linear operators in a Hilbert space
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1979
%P 808-813
%V 24
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_1979_24_4_a9/
%G ru
%F TVP_1979_24_4_a9
T. А. Skorohod. On the convergence of infinite products of independent random linear operators in a Hilbert space. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 4, pp. 808-813. http://geodesic.mathdoc.fr/item/TVP_1979_24_4_a9/