On the coincidence of $\sigma$-algebras in the filtration problem for diffusion processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 4, pp. 771-780
Voir la notice de l'article provenant de la source Math-Net.Ru
Multidimensional diffusion process (1) with two components is considered. The main theorem states that two $\sigma$-algebras (one generated by the observable process $y_t$ and another generated by its innovation $\overline w_t$ and initial condition $y_0$) coincide.
@article{TVP_1979_24_4_a6,
author = {N. V. Krylov},
title = {On the coincidence of $\sigma$-algebras in the filtration problem for diffusion processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {771--780},
publisher = {mathdoc},
volume = {24},
number = {4},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_4_a6/}
}
TY - JOUR AU - N. V. Krylov TI - On the coincidence of $\sigma$-algebras in the filtration problem for diffusion processes JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1979 SP - 771 EP - 780 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1979_24_4_a6/ LA - ru ID - TVP_1979_24_4_a6 ER -
N. V. Krylov. On the coincidence of $\sigma$-algebras in the filtration problem for diffusion processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 4, pp. 771-780. http://geodesic.mathdoc.fr/item/TVP_1979_24_4_a6/