Some limit theorems for the processes with random time
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 4, pp. 754-770 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Suppose that $G(t,\omega)$ and $F(t,\omega)$ are independent stochastic processes satisfying Rosenblatt's mixing condition (0.3). We consider the processes with random time $Q(t,\omega)=G(H(t),\omega)$, where the function $H(t)$ in the case of continuous $t$ is defined by (0.8) and in the case of discrete $t$ – by (0.9). The weak convergence of the process $$ Z_{\varepsilon}(\tau)=\varepsilon^{1/2}\int_0^{\tau/\varepsilon}G(H(t),\omega)\,dt\qquad(0\le\tau\le 1) $$ to the process $\sqrt{V(\omega)}W(\tau)$ is proved. Here $V(\omega)$ is defined by (3.2) and $W(\tau)$ is a Wiener process independent of the random variable $V(\omega)$. A stochastic approximation procedure for the processes with random time is discussed also.
@article{TVP_1979_24_4_a5,
     author = {A. N. Borodin},
     title = {Some limit theorems for the processes with random time},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {754--770},
     year = {1979},
     volume = {24},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_4_a5/}
}
TY  - JOUR
AU  - A. N. Borodin
TI  - Some limit theorems for the processes with random time
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1979
SP  - 754
EP  - 770
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_1979_24_4_a5/
LA  - ru
ID  - TVP_1979_24_4_a5
ER  - 
%0 Journal Article
%A A. N. Borodin
%T Some limit theorems for the processes with random time
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1979
%P 754-770
%V 24
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_1979_24_4_a5/
%G ru
%F TVP_1979_24_4_a5
A. N. Borodin. Some limit theorems for the processes with random time. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 4, pp. 754-770. http://geodesic.mathdoc.fr/item/TVP_1979_24_4_a5/