On the distribution of the absorption moment for semimarkov multiplication process
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 4, pp. 880-885
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\{\tau_i\}_{i=1}^{\infty}$ and $\{\gamma_i\}_{i=1}^{\infty}$ be independent sequences of independent positive random variables. For the process $$ Y_n=\gamma_1\gamma_2\dots\gamma_n(x-\xi_n),\quad\text{where}\quad \xi_n=\sum_{i=1}^n\tau_i/\gamma_1\gamma_2\dots\gamma_{i-1}, $$ we consider a random variable $\zeta(x)=\inf\{n\colon Y_n\le 0\ (Y_0=x)\}$ and investigate its limit distributions when $x\to\infty$.
@article{TVP_1979_24_4_a21,
author = {G. \v{S}. Lev},
title = {On the distribution of the absorption moment for semimarkov multiplication process},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {880--885},
year = {1979},
volume = {24},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_4_a21/}
}
G. Š. Lev. On the distribution of the absorption moment for semimarkov multiplication process. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 4, pp. 880-885. http://geodesic.mathdoc.fr/item/TVP_1979_24_4_a21/