Asymptotic analysis of distributions in the problems with two boundaries.~II
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 4, pp. 873-879
Voir la notice de l'article provenant de la source Math-Net.Ru
Let the conditions of the first part of the paper are satisfied. We obtain the complete asymptotic expansions of the probabilities
\begin{gather*}
\mathbf P\{S_n=k,\,N>n\},\qquad k\in(-a,b),\\
\mathbf P\{S_N=k,\,N=n\},\qquad k\notin(-a,b),
\end{gather*}
for the case $a=a(n)=o(n)$, $b=b(n)=o(n)$, $a\to\infty$, $b\to\infty$, $a+b\ge Cn^{1/2}$.
@article{TVP_1979_24_4_a20,
author = {V. I. Lotov},
title = {Asymptotic analysis of distributions in the problems with two {boundaries.~II}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {873--879},
publisher = {mathdoc},
volume = {24},
number = {4},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_4_a20/}
}
V. I. Lotov. Asymptotic analysis of distributions in the problems with two boundaries.~II. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 4, pp. 873-879. http://geodesic.mathdoc.fr/item/TVP_1979_24_4_a20/