On the probabilities of moderate deviations for sums of independent random variables
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 4, pp. 858-865
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $X_1,X_2,\dots$ be a sequence of independent identically distributed random variables and $\sigma>0$. Put
$$
F_n(x)=\mathbf P\biggl\{\sum_{i=1}^nX_i\biggr\},\qquad\Phi(x)=(2\pi)^{-1/2}\int_{-\infty}^x e^{-t^2/2}\,dt.
$$
Necessary and sufficient conditions are found for the validity of the relation
$$
1-F_n(x\sigma\sqrt n)=(1-\Phi(x))(1+o(1)),\qquad 0\le x\le c\sqrt{\log n},\qquad n\to\infty.
$$
            
            
            
          
        
      @article{TVP_1979_24_4_a18,
     author = {N. N. Amosova},
     title = {On the probabilities of moderate deviations for sums of independent random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {858--865},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_4_a18/}
}
                      
                      
                    TY - JOUR AU - N. N. Amosova TI - On the probabilities of moderate deviations for sums of independent random variables JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1979 SP - 858 EP - 865 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1979_24_4_a18/ LA - ru ID - TVP_1979_24_4_a18 ER -
N. N. Amosova. On the probabilities of moderate deviations for sums of independent random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 4, pp. 858-865. http://geodesic.mathdoc.fr/item/TVP_1979_24_4_a18/
