Local Markovian property of Gaussian stationary processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 4, pp. 854-858
Cet article a éte moissonné depuis la source Math-Net.Ru
A special class of Gaussian stationary processes which have $k$ derivatives is considered. We assume that the covariance function of the process behaves at the origin so as the covariance function of a process with rational spectral density. It is proved that $(k+1)$-dimensional process (i. е., the process itself and $k$ its derivatives) may be assumed to be Markovian when calculating the asymptotics of functions which are the subintegral expressions in the formula for factorial moments of the number of zero-crossings by tbe process in a small time interval.
@article{TVP_1979_24_4_a17,
author = {N. A. Geodakov},
title = {Local {Markovian} property of {Gaussian} stationary processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {854--858},
year = {1979},
volume = {24},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_4_a17/}
}
N. A. Geodakov. Local Markovian property of Gaussian stationary processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 4, pp. 854-858. http://geodesic.mathdoc.fr/item/TVP_1979_24_4_a17/