Probabilities of large deviations for the sums of functions of mixing sequences
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 4, pp. 840-846
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $a_1,a_2,\dots$ be a strictly stationary sequence of random variables satisfying Rosenblatt's mixing condition with coefficient $\alpha(k)\le Ae^{-\alpha k}$, $a,A>0$. We investigate, the probabilites of large deviations (of the order $o(n^{1/8}\ln^{-1}n)$) for the sums $$ n^{-1/2}(\xi_{1s}+\dots+\xi_{ns}),\qquad\xi_{ks}=f_s(a_k,\dots,a_{k+s-1}),\qquad k=1,2,\dots, $$ where $s=s(n)$, $1\le s(n)\le\ln n$, $|\xi_{1s}|\le B<\infty$, $\mathbf E\xi_{1s}=0$, $$ \lim_{n\to\infty}n^{-1}(\xi_{1s}+\dots+\xi_{ns})^2>0. $$
@article{TVP_1979_24_4_a15,
author = {V. T. Dubrovin and D. A. Moskvin},
title = {Probabilities of large deviations for the sums of functions of mixing sequences},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {840--846},
year = {1979},
volume = {24},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_4_a15/}
}
TY - JOUR AU - V. T. Dubrovin AU - D. A. Moskvin TI - Probabilities of large deviations for the sums of functions of mixing sequences JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1979 SP - 840 EP - 846 VL - 24 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_1979_24_4_a15/ LA - ru ID - TVP_1979_24_4_a15 ER -
V. T. Dubrovin; D. A. Moskvin. Probabilities of large deviations for the sums of functions of mixing sequences. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 4, pp. 840-846. http://geodesic.mathdoc.fr/item/TVP_1979_24_4_a15/