Renewal theorems in $R^d$
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 3, pp. 565-573

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\zeta_n$ be the sum of i. i. d. random vectors. The renewal measure $\displaystyle H(E)=\sum_{n=1}^{\infty}\mathbf P\{\zeta_n\in E\}$ with $E$ being a bounded Borel set is considered. Some results concerning the asymptotic behaviour of $H(E+x)$ as $|x|\to\infty$ are obtained.
@article{TVP_1979_24_3_a9,
     author = {A. V. Nagaev},
     title = {Renewal theorems in $R^d$},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {565--573},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_3_a9/}
}
TY  - JOUR
AU  - A. V. Nagaev
TI  - Renewal theorems in $R^d$
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1979
SP  - 565
EP  - 573
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1979_24_3_a9/
LA  - ru
ID  - TVP_1979_24_3_a9
ER  - 
%0 Journal Article
%A A. V. Nagaev
%T Renewal theorems in $R^d$
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1979
%P 565-573
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1979_24_3_a9/
%G ru
%F TVP_1979_24_3_a9
A. V. Nagaev. Renewal theorems in $R^d$. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 3, pp. 565-573. http://geodesic.mathdoc.fr/item/TVP_1979_24_3_a9/