Renewal theorems in $R^d$
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 3, pp. 565-573
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\zeta_n$ be the sum of i. i. d. random vectors. The renewal measure $\displaystyle H(E)=\sum_{n=1}^{\infty}\mathbf P\{\zeta_n\in E\}$ with $E$ being a bounded Borel set is considered. Some results concerning the asymptotic behaviour of $H(E+x)$ as $|x|\to\infty$ are obtained.
			
            
            
            
          
        
      @article{TVP_1979_24_3_a9,
     author = {A. V. Nagaev},
     title = {Renewal theorems in $R^d$},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {565--573},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_3_a9/}
}
                      
                      
                    A. V. Nagaev. Renewal theorems in $R^d$. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 3, pp. 565-573. http://geodesic.mathdoc.fr/item/TVP_1979_24_3_a9/
