The central limit theorem for the sums of functions of mixing sequences
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 3, pp. 553-564
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $a_1,a_2,\dots$ be a strictly stationary sequence of random variables, $f(x_1,\dots,x_s)$ be a measurable function and
$$
\xi_{ks}=f(a_k,\dots,a_{k+s-1}),\qquad k=1,2,\dots
$$
We prove that the central limit theorem holds for $\xi_{ks}$ with the remainder term $O(n^{2\omega^{-1/8}-1/2})$ if the sequence $\{a_k\}$ satisfies Rosenblatt's mixing condition with coefficient $\alpha(k)\le Ak^{-\omega}$ ($A>0$, $\omega>3996$) and for $s=s(n)$, $1\le s(n)\le \ln^2n$, the random variables $\xi_{ks}$ are uniformly bounded with probability 1 and $\mathbf E\xi_{ks}=0$.
@article{TVP_1979_24_3_a8,
author = {V. T. Dubrovin and D. A. Moskvin},
title = {The central limit theorem for the sums of functions of mixing sequences},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {553--564},
publisher = {mathdoc},
volume = {24},
number = {3},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_3_a8/}
}
TY - JOUR AU - V. T. Dubrovin AU - D. A. Moskvin TI - The central limit theorem for the sums of functions of mixing sequences JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1979 SP - 553 EP - 564 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1979_24_3_a8/ LA - ru ID - TVP_1979_24_3_a8 ER -
V. T. Dubrovin; D. A. Moskvin. The central limit theorem for the sums of functions of mixing sequences. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 3, pp. 553-564. http://geodesic.mathdoc.fr/item/TVP_1979_24_3_a8/