Probability inequalities for series of independent random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 3, pp. 632-636 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\xi_k$ ($k=1,2,\dots$) be independent random variables, $\mathbf E\xi_k=0$, $\mathbf D\xi_k=1$. The probability inequalities are obtained for the sum $\xi$ of the series $\displaystyle\sum_{k=1}^{\infty}a_k\xi_k$. The theorem 1 states that $$ \mathbf P\{|\xi|\ge x\}\le 2\,\exp\{-C_{\lambda} x^{\lambda/(\lambda-1)}\} $$ if the summands have «a large value with a small probabilities» and $\displaystyle\sum_{k=1}^{\infty}|a_k|^{\lambda}<\infty$ ($1<\lambda\le 2$). The theorem 2 ascertains the accuracy of bound (1): the exponent $\lambda/(\lambda-1)$ of $x$ cannot be more than $\beta/(\beta-1)$ if the exponent of convergence of sequence $\{a_k\}$ equals to $\beta$.
@article{TVP_1979_24_3_a21,
     author = {S. N. Antonov},
     title = {Probability inequalities for series of independent random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {632--636},
     year = {1979},
     volume = {24},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_3_a21/}
}
TY  - JOUR
AU  - S. N. Antonov
TI  - Probability inequalities for series of independent random variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1979
SP  - 632
EP  - 636
VL  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_1979_24_3_a21/
LA  - ru
ID  - TVP_1979_24_3_a21
ER  - 
%0 Journal Article
%A S. N. Antonov
%T Probability inequalities for series of independent random variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1979
%P 632-636
%V 24
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_1979_24_3_a21/
%G ru
%F TVP_1979_24_3_a21
S. N. Antonov. Probability inequalities for series of independent random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 3, pp. 632-636. http://geodesic.mathdoc.fr/item/TVP_1979_24_3_a21/