On a property of homogeneous Gaussian $L$-fields
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 3, pp. 596-600
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Basing on a theorem due to Yu. A. Rozanov we show that for $n=1$ and for $n=2$ there are only regular and singular homogeneous Gaussian fields $(\xi_t)_{t\in Z^n}$ but for $n\ge 3$ there exist homogeneous Gaussian $L$-fields $(\xi_t)_{t\in Z^n}$ which are neither regular nor singular.
			
            
            
            
          
        
      @article{TVP_1979_24_3_a14,
     author = {A. Brandst\"adt},
     title = {On a property of homogeneous {Gaussian} $L$-fields},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {596--600},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_3_a14/}
}
                      
                      
                    A. Brandstädt. On a property of homogeneous Gaussian $L$-fields. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 3, pp. 596-600. http://geodesic.mathdoc.fr/item/TVP_1979_24_3_a14/
