On a property of homogeneous Gaussian $L$-fields
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 3, pp. 596-600
Cet article a éte moissonné depuis la source Math-Net.Ru
Basing on a theorem due to Yu. A. Rozanov we show that for $n=1$ and for $n=2$ there are only regular and singular homogeneous Gaussian fields $(\xi_t)_{t\in Z^n}$ but for $n\ge 3$ there exist homogeneous Gaussian $L$-fields $(\xi_t)_{t\in Z^n}$ which are neither regular nor singular.
@article{TVP_1979_24_3_a14,
author = {A. Brandst\"adt},
title = {On a property of homogeneous {Gaussian} $L$-fields},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {596--600},
year = {1979},
volume = {24},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_3_a14/}
}
A. Brandstädt. On a property of homogeneous Gaussian $L$-fields. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 3, pp. 596-600. http://geodesic.mathdoc.fr/item/TVP_1979_24_3_a14/