On a property of homogeneous Gaussian $L$-fields
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 3, pp. 596-600

Voir la notice de l'article provenant de la source Math-Net.Ru

Basing on a theorem due to Yu. A. Rozanov we show that for $n=1$ and for $n=2$ there are only regular and singular homogeneous Gaussian fields $(\xi_t)_{t\in Z^n}$ but for $n\ge 3$ there exist homogeneous Gaussian $L$-fields $(\xi_t)_{t\in Z^n}$ which are neither regular nor singular.
@article{TVP_1979_24_3_a14,
     author = {A. Brandst\"adt},
     title = {On a property of homogeneous {Gaussian} $L$-fields},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {596--600},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_3_a14/}
}
TY  - JOUR
AU  - A. Brandstädt
TI  - On a property of homogeneous Gaussian $L$-fields
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1979
SP  - 596
EP  - 600
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1979_24_3_a14/
LA  - ru
ID  - TVP_1979_24_3_a14
ER  - 
%0 Journal Article
%A A. Brandstädt
%T On a property of homogeneous Gaussian $L$-fields
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1979
%P 596-600
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1979_24_3_a14/
%G ru
%F TVP_1979_24_3_a14
A. Brandstädt. On a property of homogeneous Gaussian $L$-fields. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 3, pp. 596-600. http://geodesic.mathdoc.fr/item/TVP_1979_24_3_a14/