On the strong solutions of stochastic differential equations
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 2, pp. 348-360
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that under some conditions the equation
$$
x_t=x_0+\int_0^t\sigma(s,x_s)\,dw_s+\int_0^t b(s,x_s)\,ds
$$
has a strong solution and that the pathwise uniqueness for this solution holds.
@article{TVP_1979_24_2_a7,
author = {A. Yu. Veretennikov},
title = {On the strong solutions of stochastic differential equations},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {348--360},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_2_a7/}
}
A. Yu. Veretennikov. On the strong solutions of stochastic differential equations. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 2, pp. 348-360. http://geodesic.mathdoc.fr/item/TVP_1979_24_2_a7/