On the characterization of multidimensional normal law by the independence of linear statistics
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 2, pp. 381-385

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{X_j\}$ be a sequence of independent random vectors in $R^k$ and $\{A_j,B_j\}$ be a sequence of pairs of nonsingular real $(k\times k)$-matrices. It is shown that every $X_j$ has $k$-dimensional normal distribution if linear statistics (1) converge with probability 1 to independent random vectors and the condition (2) is satisfied.
@article{TVP_1979_24_2_a10,
     author = {A. A. Zinger},
     title = {On the characterization of multidimensional normal law by the independence of linear statistics},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {381--385},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_2_a10/}
}
TY  - JOUR
AU  - A. A. Zinger
TI  - On the characterization of multidimensional normal law by the independence of linear statistics
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1979
SP  - 381
EP  - 385
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1979_24_2_a10/
LA  - ru
ID  - TVP_1979_24_2_a10
ER  - 
%0 Journal Article
%A A. A. Zinger
%T On the characterization of multidimensional normal law by the independence of linear statistics
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1979
%P 381-385
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1979_24_2_a10/
%G ru
%F TVP_1979_24_2_a10
A. A. Zinger. On the characterization of multidimensional normal law by the independence of linear statistics. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 2, pp. 381-385. http://geodesic.mathdoc.fr/item/TVP_1979_24_2_a10/