Linear sampling estimations of sums
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 2, pp. 241-251 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Linear estimates of the form $\displaystyle\widehat Z=\sum_i\alpha_iX_i$ for the sums $\displaystyle Z =\sum_iX_i$ are considered, where $X_i$, $i=1\div n$ are unknown constants and $\alpha$ is a random vector in $R^n$. Various classes of estimates are distinguished by requirements on the distribution law of $\alpha$. The estimates subordinate to the sampling plan are introduced, the latter is defined by the vector $\varepsilon=(\varepsilon_1,\dots,\varepsilon_n)\ \varepsilon_i = 0$ or $1$. For symmetric sampling plans among the corresponding subordinate estimates the optimal ones having the minimal variance are found. The estimates near to optimal are obtained for the independent trials scheme. Two estimates are also considered for independent trials in nonsymmetric case and their asymptotic normality is proved.
@article{TVP_1979_24_2_a0,
     author = {A. V. Bulinskiǐ and A. N. Kolmogorov},
     title = {Linear sampling estimations of~sums},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {241--251},
     year = {1979},
     volume = {24},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_2_a0/}
}
TY  - JOUR
AU  - A. V. Bulinskiǐ
AU  - A. N. Kolmogorov
TI  - Linear sampling estimations of sums
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1979
SP  - 241
EP  - 251
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_1979_24_2_a0/
LA  - ru
ID  - TVP_1979_24_2_a0
ER  - 
%0 Journal Article
%A A. V. Bulinskiǐ
%A A. N. Kolmogorov
%T Linear sampling estimations of sums
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1979
%P 241-251
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_1979_24_2_a0/
%G ru
%F TVP_1979_24_2_a0
A. V. Bulinskiǐ; A. N. Kolmogorov. Linear sampling estimations of sums. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 2, pp. 241-251. http://geodesic.mathdoc.fr/item/TVP_1979_24_2_a0/