Boundary conditions and an ergodic theorem for processes with independent increments
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 1, pp. 52-61
Voir la notice de l'article provenant de la source Math-Net.Ru
All homogeneous Markov processes with state space $[0,\infty)$ which behave themselves as processes with independent increments and positive jumps up to the first exit time from $(0,\infty)$ are described. Conditions are obtained under which general ergodic theorems can be applied to such processes. The form of the stationary distribution is found which can be quite simply expressed in terms of the distribution of the absolute maximum of
the process in question and coefficients of the boundary condition at zero.
@article{TVP_1979_24_1_a3,
author = {V. M. \v{S}urenkov},
title = {Boundary conditions and an ergodic theorem for processes with independent increments},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {52--61},
publisher = {mathdoc},
volume = {24},
number = {1},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a3/}
}
TY - JOUR AU - V. M. Šurenkov TI - Boundary conditions and an ergodic theorem for processes with independent increments JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1979 SP - 52 EP - 61 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a3/ LA - ru ID - TVP_1979_24_1_a3 ER -
V. M. Šurenkov. Boundary conditions and an ergodic theorem for processes with independent increments. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 1, pp. 52-61. http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a3/