On some topological properties of countably additive cylindrical measures
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 1, pp. 211-215

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E$ be a Hausdorff locally convex space, $E'$ denotes the topological dual space of $E$. Let $\lambda$ he a cylindrical measure on $E'$. We prove that for a wide class of locally convex spaces $E$ the measure $\lambda$ is countably additive iff $\lambda$ is cylindrically concentrated on the paving of polars of origin's neighbourhood in $E$.
@article{TVP_1979_24_1_a23,
     author = {Yu. N. Vladimirskiǐ},
     title = {On some topological properties of countably additive cylindrical measures},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {211--215},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a23/}
}
TY  - JOUR
AU  - Yu. N. Vladimirskiǐ
TI  - On some topological properties of countably additive cylindrical measures
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1979
SP  - 211
EP  - 215
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a23/
LA  - ru
ID  - TVP_1979_24_1_a23
ER  - 
%0 Journal Article
%A Yu. N. Vladimirskiǐ
%T On some topological properties of countably additive cylindrical measures
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1979
%P 211-215
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a23/
%G ru
%F TVP_1979_24_1_a23
Yu. N. Vladimirskiǐ. On some topological properties of countably additive cylindrical measures. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 1, pp. 211-215. http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a23/