On some topological properties of countably additive cylindrical measures
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 1, pp. 211-215
Let $E$ be a Hausdorff locally convex space, $E'$ denotes the topological dual space of $E$. Let $\lambda$ he a cylindrical measure on $E'$. We prove that for a wide class of locally convex spaces $E$ the measure $\lambda$ is countably additive iff $\lambda$ is cylindrically concentrated on the paving of polars of origin's neighbourhood in $E$.
@article{TVP_1979_24_1_a23,
author = {Yu. N. Vladimirskiǐ},
title = {On some topological properties of countably additive cylindrical measures},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {211--215},
year = {1979},
volume = {24},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a23/}
}
Yu. N. Vladimirskiǐ. On some topological properties of countably additive cylindrical measures. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 1, pp. 211-215. http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a23/