On the $\sigma$-algebra of symmetrical events for a countable Markov chain
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 1, pp. 198-204

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the $\sigma$-algebra of symmetrical events for a countable Markov chain $\{x_n, n\ge 1\}$ coincides a. s. with $T(\sigma_1\bigcap\sigma_2)$, where $T$ is a left shift and $\sigma_i=\sigma(x_i)$, $i=1,2$.
@article{TVP_1979_24_1_a20,
     author = {L. A. Grigorenko},
     title = {On the $\sigma$-algebra of symmetrical events for a countable {Markov} chain},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {198--204},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a20/}
}
TY  - JOUR
AU  - L. A. Grigorenko
TI  - On the $\sigma$-algebra of symmetrical events for a countable Markov chain
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1979
SP  - 198
EP  - 204
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a20/
LA  - ru
ID  - TVP_1979_24_1_a20
ER  - 
%0 Journal Article
%A L. A. Grigorenko
%T On the $\sigma$-algebra of symmetrical events for a countable Markov chain
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1979
%P 198-204
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a20/
%G ru
%F TVP_1979_24_1_a20
L. A. Grigorenko. On the $\sigma$-algebra of symmetrical events for a countable Markov chain. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 1, pp. 198-204. http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a20/