On the $\sigma$-algebra of symmetrical events for a countable Markov chain
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 1, pp. 198-204
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the $\sigma$-algebra of symmetrical events for a countable Markov chain $\{x_n, n\ge 1\}$ coincides a. s. with $T(\sigma_1\bigcap\sigma_2)$, where $T$ is a left shift and $\sigma_i=\sigma(x_i)$, $i=1,2$.
@article{TVP_1979_24_1_a20,
author = {L. A. Grigorenko},
title = {On the $\sigma$-algebra of symmetrical events for a countable {Markov} chain},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {198--204},
publisher = {mathdoc},
volume = {24},
number = {1},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a20/}
}
TY - JOUR AU - L. A. Grigorenko TI - On the $\sigma$-algebra of symmetrical events for a countable Markov chain JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1979 SP - 198 EP - 204 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a20/ LA - ru ID - TVP_1979_24_1_a20 ER -
L. A. Grigorenko. On the $\sigma$-algebra of symmetrical events for a countable Markov chain. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 1, pp. 198-204. http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a20/