Remarks on the weak limit of the superposition of asymptotically independent random functions
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 1, pp. 150-155
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\xi(t)$, $t\ge 0$, be a continuous from the right stochastic process without discontinuities of the second kind and $\nu_{\varepsilon}$ (for each $\varepsilon\ge 0$) be a non-negative random variable. In this paper we study some general sufficient conditions for the weak convergence of the distribution functions of random variables $\xi_{\varepsilon}(\nu_{\varepsilon})$ to the distribution function of $\xi_0(\nu_0)$ as $\varepsilon\to 0$ for the scheme when the process $\xi_{\varepsilon}(t)$ and the variable $\nu_{\varepsilon}$ are asymptotically (as $\varepsilon\to 0$) independent.
@article{TVP_1979_24_1_a11,
author = {D. S. Sil'vestrov},
title = {Remarks on the weak limit of the superposition of asymptotically independent random functions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {150--155},
publisher = {mathdoc},
volume = {24},
number = {1},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a11/}
}
TY - JOUR AU - D. S. Sil'vestrov TI - Remarks on the weak limit of the superposition of asymptotically independent random functions JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1979 SP - 150 EP - 155 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a11/ LA - ru ID - TVP_1979_24_1_a11 ER -
D. S. Sil'vestrov. Remarks on the weak limit of the superposition of asymptotically independent random functions. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 1, pp. 150-155. http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a11/