On the strong solutions of stochastic differential equations with nonsmooth coefficients
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 1, pp. 146-149
Cet article a éte moissonné depuis la source Math-Net.Ru
By means of purely probabilistic methods we prove the existence of strong solution of a stochastic differential equation $$ dx(t,\omega)=f(x(t,\omega))\,dt+dw(t,\omega),x(0,\omega)=x_0\in R^1,\ 0\le t\le T<\infty, $$ in the case when the drift coefficient $f(x)$ is bounded and piecewise smooth or continuous function.
@article{TVP_1979_24_1_a10,
author = {A. V. Mel'nikov},
title = {On the strong solutions of stochastic differential equations with nonsmooth coefficients},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {146--149},
year = {1979},
volume = {24},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a10/}
}
TY - JOUR AU - A. V. Mel'nikov TI - On the strong solutions of stochastic differential equations with nonsmooth coefficients JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1979 SP - 146 EP - 149 VL - 24 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a10/ LA - ru ID - TVP_1979_24_1_a10 ER -
A. V. Mel'nikov. On the strong solutions of stochastic differential equations with nonsmooth coefficients. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 1, pp. 146-149. http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a10/