A new version of the law of large numbers
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 1, pp. 3-17
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper the system (0.1) of $N$ differential equations with random coefficients $\eta_{kj}(z)$ is considered. This system of coupled mode propagation is a mathematical model for wave-guides with random imperfections. The sum
\begin{equation}
\sum_{j=1}^N |E_j(z)|^2
\end{equation}
is the power flow at the output of the wave-guide ($z$ is its lehgth). The physical considerations justify the investigation of an asymptotic problem when $N\to\infty$, $\eta_{kj}(z)\to 0$, $\alpha_j\to 0$, $z\to\infty$. Under some conditions the variance of the sum (1) converges to 0, while its expectation remains positive.
@article{TVP_1979_24_1_a0,
author = {V. N. Tutubalin},
title = {A new version of the law of large numbers},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {3--17},
publisher = {mathdoc},
volume = {24},
number = {1},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a0/}
}
V. N. Tutubalin. A new version of the law of large numbers. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 1, pp. 3-17. http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a0/