A new version of the law of large numbers
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 1, pp. 3-17

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the system (0.1) of $N$ differential equations with random coefficients $\eta_{kj}(z)$ is considered. This system of coupled mode propagation is a mathematical model for wave-guides with random imperfections. The sum \begin{equation} \sum_{j=1}^N |E_j(z)|^2 \end{equation} is the power flow at the output of the wave-guide ($z$ is its lehgth). The physical considerations justify the investigation of an asymptotic problem when $N\to\infty$, $\eta_{kj}(z)\to 0$, $\alpha_j\to 0$, $z\to\infty$. Under some conditions the variance of the sum (1) converges to 0, while its expectation remains positive.
@article{TVP_1979_24_1_a0,
     author = {V. N. Tutubalin},
     title = {A new version of the law of large numbers},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a0/}
}
TY  - JOUR
AU  - V. N. Tutubalin
TI  - A new version of the law of large numbers
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1979
SP  - 3
EP  - 17
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a0/
LA  - ru
ID  - TVP_1979_24_1_a0
ER  - 
%0 Journal Article
%A V. N. Tutubalin
%T A new version of the law of large numbers
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1979
%P 3-17
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a0/
%G ru
%F TVP_1979_24_1_a0
V. N. Tutubalin. A new version of the law of large numbers. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 1, pp. 3-17. http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a0/