On the accuracy of Poisson approximation in an occupancy problem
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 4, pp. 819-824
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $n$ particles are deposited independently in the cells $1,2,\dots$. We obtain inequalities for the distributions of the number of cells which contain exactly $r$ particles.
			
            
            
            
          
        
      @article{TVP_1978_23_4_a9,
     author = {A. M. Zubkov and V. G. Mihaǐlov},
     title = {On the accuracy of {Poisson} approximation in an occupancy problem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {819--824},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a9/}
}
                      
                      
                    TY - JOUR AU - A. M. Zubkov AU - V. G. Mihaǐlov TI - On the accuracy of Poisson approximation in an occupancy problem JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1978 SP - 819 EP - 824 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a9/ LA - ru ID - TVP_1978_23_4_a9 ER -
A. M. Zubkov; V. G. Mihaǐlov. On the accuracy of Poisson approximation in an occupancy problem. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 4, pp. 819-824. http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a9/
