Decomposable statistics and hypothesis testing. The case of small samples
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 4, pp. 796-806
Voir la notice de l'article provenant de la source Math-Net.Ru
Questions of statistical hypotheses testing are considered for polynomial outcome probabilities in the scheme of series under the conditions that the number of outcomes $N$ and the number of tests $n$ increase simultaneously to infinity so that $n/N$ remains bounded. A class of tests is studied which is based on decomposable statistics of outcomes, frequencies. In particular, some results are obtained concerning the classical $\chi^2$-test and maximum likelihood ratio test.
@article{TVP_1978_23_4_a7,
author = {G. I. Iv\v{c}enko and Yu. I. Medvedev},
title = {Decomposable statistics and hypothesis testing. {The} case of small samples},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {796--806},
publisher = {mathdoc},
volume = {23},
number = {4},
year = {1978},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a7/}
}
TY - JOUR AU - G. I. Ivčenko AU - Yu. I. Medvedev TI - Decomposable statistics and hypothesis testing. The case of small samples JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1978 SP - 796 EP - 806 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a7/ LA - ru ID - TVP_1978_23_4_a7 ER -
G. I. Ivčenko; Yu. I. Medvedev. Decomposable statistics and hypothesis testing. The case of small samples. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 4, pp. 796-806. http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a7/