On the uniqueness and existence of solutions of stochastic equations with respect to semimartingales
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 4, pp. 782-795
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $a=(a_t)$, $t\in[0,\infty[$, be a predictable process with locally integrable variation, $m=(m_t)$ be a continuous local martingale, $p$ be a stochastic integer-valued measure on $\mathfrak B([0,\infty[)\times\mathfrak B(R^d\setminus\{0\})$ and $\lambda$ be a dual predictable projection of $p$. The processes $a$ and $m$ take values in $R^d$, $d\ge 1$. The uniqueness and existence theorem is proved lor the solutions of a stochastic integral equation \begin{gather*} Y_t(\omega)=N_t(\omega)+\int_0^t\sum_{j=1}^df^j(\omega,s,Y_{s-}(\omega))\,da_s^j(\omega)+ \int_0^t\sum_{j=1}^dg^j(\omega,s,Y_{s-}(\omega))\,dm_s^j(\omega)+\\ \int_0^t\int_{|u|\le 1}h(\omega,s,u,Y_{s-}(\omega))(p-\lambda)(\omega,ds,du)+\\ \int_0^t\int_{|u|>1}h(\omega,s,u,Y_{s-}(\omega))p(\omega,ds,du), \end{gather*} where $N=(N_t)$ is a known process the paths of which are right-hand continuous and have left-hand limits. The functions $f(\omega,s,x)$, $g(\omega,s,x)$, $h(\omega,s,u,x)$ satisfy the Lipschitz conditions in $x$ and are predictable in other variables.
@article{TVP_1978_23_4_a6,
author = {L. I. Gal'\v{c}uk},
title = {On the uniqueness and existence of solutions of stochastic equations with respect to semimartingales},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {782--795},
year = {1978},
volume = {23},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a6/}
}
TY - JOUR AU - L. I. Gal'čuk TI - On the uniqueness and existence of solutions of stochastic equations with respect to semimartingales JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1978 SP - 782 EP - 795 VL - 23 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a6/ LA - ru ID - TVP_1978_23_4_a6 ER -
L. I. Gal'čuk. On the uniqueness and existence of solutions of stochastic equations with respect to semimartingales. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 4, pp. 782-795. http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a6/