A regression problem for continuous time series
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 4, pp. 762-771
Cet article a éte moissonné depuis la source Math-Net.Ru
A model of observation $$ \xi(t)=mt^{\nu}+\Delta(t),\qquad t\in[0,T], $$ is considered, where $\nu$ is a non-negative integer, $\Delta(t)$ is a stationary process with zero mean and with the spectral density of the form $$ f(\lambda)=|\lambda|^{2\alpha}g(\lambda),\qquad \alpha>-1/2,\qquad g(0)>0. $$ An asymptotically efficient estimate for the parameter $m$ is constructed as the pseudobest estimate corresponding to the generalized spectral density $|\lambda|^{2\alpha}$.
@article{TVP_1978_23_4_a4,
author = {N. P. Rasulov and A. S. Holevo},
title = {A regression problem for continuous time series},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {762--771},
year = {1978},
volume = {23},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a4/}
}
N. P. Rasulov; A. S. Holevo. A regression problem for continuous time series. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 4, pp. 762-771. http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a4/