A regression problem for continuous time series
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 4, pp. 762-771

Voir la notice de l'article provenant de la source Math-Net.Ru

A model of observation $$ \xi(t)=mt^{\nu}+\Delta(t),\qquad t\in[0,T], $$ is considered, where $\nu$ is a non-negative integer, $\Delta(t)$ is a stationary process with zero mean and with the spectral density of the form $$ f(\lambda)=|\lambda|^{2\alpha}g(\lambda),\qquad \alpha>-1/2,\qquad g(0)>0. $$ An asymptotically efficient estimate for the parameter $m$ is constructed as the pseudobest estimate corresponding to the generalized spectral density $|\lambda|^{2\alpha}$.
@article{TVP_1978_23_4_a4,
     author = {N. P. Rasulov and A. S. Holevo},
     title = {A regression problem for continuous time series},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {762--771},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a4/}
}
TY  - JOUR
AU  - N. P. Rasulov
AU  - A. S. Holevo
TI  - A regression problem for continuous time series
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1978
SP  - 762
EP  - 771
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a4/
LA  - ru
ID  - TVP_1978_23_4_a4
ER  - 
%0 Journal Article
%A N. P. Rasulov
%A A. S. Holevo
%T A regression problem for continuous time series
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1978
%P 762-771
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a4/
%G ru
%F TVP_1978_23_4_a4
N. P. Rasulov; A. S. Holevo. A regression problem for continuous time series. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 4, pp. 762-771. http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a4/