On the accuracy of the remainder term estimation in the central limit theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 4, pp. 744-761

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X_1,\dots$ be a sequence of independent random variables with a common distribution function $V(x)$. Put \begin{gather*} F_n(x)=\mathbf P\biggl\{\frac{1}{b_n}(X_1+\dots+X_n)-a_n\biggr\},\\ \Phi(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{t^2/2}\,dt,\quad\Delta(b_n,a_n)=\sup_x|F_n(x)-\Phi(x)|,\\ \Delta_n=\inf_{a_n,b_n}\Delta(b_n,a_n) \end{gather*} where $a_n$, $b_n$ ($b_n>0$) are sequences of real numbers. The paper deals with questions of the accuracy in estimating $|F_n(x)-\Phi(x)|$ when $V(x)$ belongs to the domain of attraction of a normal law. In particular, necessary and sufficient conditions for $$ \biggl(\sum_{n=1}^{\infty}(g(n)\Delta_n)^s\frac{1}{n}\biggr)^{1/s}\infty,\qquad 1\le s\le\infty, $$ are obtained. (Here $g(x)$ is a function which satisfies some conditions.)
@article{TVP_1978_23_4_a3,
     author = {L. V. Rozovskiǐ},
     title = {On the accuracy of the remainder term estimation in the central limit theorem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {744--761},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a3/}
}
TY  - JOUR
AU  - L. V. Rozovskiǐ
TI  - On the accuracy of the remainder term estimation in the central limit theorem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1978
SP  - 744
EP  - 761
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a3/
LA  - ru
ID  - TVP_1978_23_4_a3
ER  - 
%0 Journal Article
%A L. V. Rozovskiǐ
%T On the accuracy of the remainder term estimation in the central limit theorem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1978
%P 744-761
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a3/
%G ru
%F TVP_1978_23_4_a3
L. V. Rozovskiǐ. On the accuracy of the remainder term estimation in the central limit theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 4, pp. 744-761. http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a3/