On the accuracy of the remainder term estimation in the central limit theorem
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 4, pp. 744-761
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $X_1,\dots$ be a sequence of independent random variables with a common distribution function $V(x)$. Put
\begin{gather*}
F_n(x)=\mathbf P\biggl\{\frac{1}{b_n}(X_1+\dots+X_n)-a_n\biggr\},\\
\Phi(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{t^2/2}\,dt,\quad\Delta(b_n,a_n)=\sup_x|F_n(x)-\Phi(x)|,\\
\Delta_n=\inf_{a_n,b_n}\Delta(b_n,a_n)
\end{gather*}
where $a_n$, $b_n$ ($b_n>0$) are sequences of real numbers.
The paper deals with questions of the accuracy in estimating $|F_n(x)-\Phi(x)|$ when $V(x)$ belongs to the domain of attraction of a normal law. In particular, necessary and sufficient conditions for
$$
\biggl(\sum_{n=1}^{\infty}(g(n)\Delta_n)^s\frac{1}{n}\biggr)^{1/s}\infty,\qquad 1\le s\le\infty,
$$
are obtained. (Here $g(x)$ is a function which satisfies some conditions.)
			
            
            
            
          
        
      @article{TVP_1978_23_4_a3,
     author = {L. V. Rozovskiǐ},
     title = {On the accuracy of the remainder term estimation in the central limit theorem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {744--761},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a3/}
}
                      
                      
                    TY - JOUR AU - L. V. Rozovskiǐ TI - On the accuracy of the remainder term estimation in the central limit theorem JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1978 SP - 744 EP - 761 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a3/ LA - ru ID - TVP_1978_23_4_a3 ER -
L. V. Rozovskiǐ. On the accuracy of the remainder term estimation in the central limit theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 4, pp. 744-761. http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a3/
