The minimax and the uniformly best estimates under quadratic loss on the base of the finite statistical structure
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 4, pp. 836-842
Cet article a éte moissonné depuis la source Math-Net.Ru
The method of constructing of the minimax unbiased estimates and the structure of optimal algebras for the finite sample space are considered. These results are applied to the investigation of binomial structures.
@article{TVP_1978_23_4_a13,
author = {P. N. Sapo\v{z}nikov},
title = {The minimax and the uniformly best estimates under quadratic loss on the base of the finite statistical structure},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {836--842},
year = {1978},
volume = {23},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a13/}
}
TY - JOUR AU - P. N. Sapožnikov TI - The minimax and the uniformly best estimates under quadratic loss on the base of the finite statistical structure JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1978 SP - 836 EP - 842 VL - 23 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a13/ LA - ru ID - TVP_1978_23_4_a13 ER -
%0 Journal Article %A P. N. Sapožnikov %T The minimax and the uniformly best estimates under quadratic loss on the base of the finite statistical structure %J Teoriâ veroâtnostej i ee primeneniâ %D 1978 %P 836-842 %V 23 %N 4 %U http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a13/ %G ru %F TVP_1978_23_4_a13
P. N. Sapožnikov. The minimax and the uniformly best estimates under quadratic loss on the base of the finite statistical structure. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 4, pp. 836-842. http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a13/