The expectation of a branching diffusion process with continuous time
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 4, pp. 831-836 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a branching diffusion process in a bounded domain with absorbing boundary. For the asymptotic behaviour of the mathematical expectation of this process we prove that $$ M_tf(x)=e^{\mu_0t}\omega_0(x)\omega_0^*(f)+O(e^{\rho t}),\qquad t\to\infty, $$ where $M_t$ is a corresponding semigroup, $\mu_0$, $\omega_0(\cdot)$, $\omega_0^*(\cdot)$ are the first eigenvalue and the first eigenvector of the infinitesimal (adjoint) operator respectively. The proof is based on the representation of the semigroup by means of the corresponding infinitesimal operator.
@article{TVP_1978_23_4_a12,
     author = {P. I. Maǐster},
     title = {The expectation of a~branching diffusion process with continuous time},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {831--836},
     year = {1978},
     volume = {23},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a12/}
}
TY  - JOUR
AU  - P. I. Maǐster
TI  - The expectation of a branching diffusion process with continuous time
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1978
SP  - 831
EP  - 836
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a12/
LA  - ru
ID  - TVP_1978_23_4_a12
ER  - 
%0 Journal Article
%A P. I. Maǐster
%T The expectation of a branching diffusion process with continuous time
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1978
%P 831-836
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a12/
%G ru
%F TVP_1978_23_4_a12
P. I. Maǐster. The expectation of a branching diffusion process with continuous time. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 4, pp. 831-836. http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a12/