The expectation of a branching diffusion process with continuous time
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 4, pp. 831-836
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a branching diffusion process in a bounded domain with absorbing boundary. For the asymptotic behaviour of the mathematical expectation of this process we prove that $$ M_tf(x)=e^{\mu_0t}\omega_0(x)\omega_0^*(f)+O(e^{\rho t}),\qquad t\to\infty, $$ where $M_t$ is a corresponding semigroup, $\mu_0$, $\omega_0(\cdot)$, $\omega_0^*(\cdot)$ are the first eigenvalue and the first eigenvector of the infinitesimal (adjoint) operator respectively. The proof is based on the representation of the semigroup by means of the corresponding infinitesimal operator.
@article{TVP_1978_23_4_a12,
author = {P. I. Maǐster},
title = {The expectation of a~branching diffusion process with continuous time},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {831--836},
year = {1978},
volume = {23},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a12/}
}
P. I. Maǐster. The expectation of a branching diffusion process with continuous time. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 4, pp. 831-836. http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a12/