Polynomials of generalized random field and its moments
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 4, pp. 715-730
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper deals with different properties of generalized random fields, i.e. probability measures in spaces of linear functionals on linear topological spaces. A general construction is given which describes random variables depending on the field with the help of polynomials of the field. By using this construction, it is proved that the existence of moments of linear random functions implies continuity of their moment forms.
			
            
            
            
          
        
      @article{TVP_1978_23_4_a1,
     author = {R. L. Dobru\v{s}in and R. A. Minlos},
     title = {Polynomials of generalized random field and its moments},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {715--730},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a1/}
}
                      
                      
                    R. L. Dobrušin; R. A. Minlos. Polynomials of generalized random field and its moments. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 4, pp. 715-730. http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a1/
