Ergodic and stability theorems for random walks in the strip and their applications
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 4, pp. 705-714
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\{N_n,\tau_n^e,\tau_n^s;\,1\le n\infty\}$ be a stationary sequence of positive random variables,
$\xi_n=\tau_n^s-\tau_n^e$. In this paper ergodic and stability theorems are obtained for the sequences $\{w_{n+k};\,k\ge 0\}$ as $n\to\infty$, which are defined by the recurrent equations of two types. The equations of the first type have the form
\begin{align*}
{n+1}=\max(0,w_n+y_n),\qquad n\ge 1,\\
\text{where}\ y_n=
\begin{cases}
\xi_n,\text{if}\ w_n\le N_n,\\
-\tau_n^e,\text{if}\ w_n> N_n.
\end{cases}
\end{align*}
The equations of the second type are the following:
$$
w_{n+1}=\min\{N_{n+1},\max(0,w_n+\xi_n)\},\qquad n\ge 1.
$$
The applications to the queueing theory are considered.
			
            
            
            
          
        
      @article{TVP_1978_23_4_a0,
     author = {A. A. Borovkov},
     title = {Ergodic and stability theorems for random walks in the strip and their applications},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {705--714},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a0/}
}
                      
                      
                    TY - JOUR AU - A. A. Borovkov TI - Ergodic and stability theorems for random walks in the strip and their applications JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1978 SP - 705 EP - 714 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a0/ LA - ru ID - TVP_1978_23_4_a0 ER -
A. A. Borovkov. Ergodic and stability theorems for random walks in the strip and their applications. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 4, pp. 705-714. http://geodesic.mathdoc.fr/item/TVP_1978_23_4_a0/
