Local times for stochastic processes with multidimensional parameters
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 3, pp. 594-605

Voir la notice de l'article provenant de la source Math-Net.Ru

A definition of a local time is proposed which is applicable for processes with arbitrary parameter set. The existence of a local time is proved to be equivalent to the absolute continuity of sojourn times with respect to the Borel measure. It is shown that it is still possible to refer to local times as measures on level sets. If the parameter set $T$ is a product $T_1\times T_2$, local times are represented as integrals over $T_1$ of local times for the restrictions of the process considered onto $t_1$-sections of $T$. This representation is used to prove the existence of jointly continuous versions of local times for analogs of the Brownian motion with multidimensional parameter.
@article{TVP_1978_23_3_a8,
     author = {Yu. A. Davydov},
     title = {Local times for stochastic processes with multidimensional parameters},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {594--605},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_3_a8/}
}
TY  - JOUR
AU  - Yu. A. Davydov
TI  - Local times for stochastic processes with multidimensional parameters
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1978
SP  - 594
EP  - 605
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1978_23_3_a8/
LA  - ru
ID  - TVP_1978_23_3_a8
ER  - 
%0 Journal Article
%A Yu. A. Davydov
%T Local times for stochastic processes with multidimensional parameters
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1978
%P 594-605
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1978_23_3_a8/
%G ru
%F TVP_1978_23_3_a8
Yu. A. Davydov. Local times for stochastic processes with multidimensional parameters. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 3, pp. 594-605. http://geodesic.mathdoc.fr/item/TVP_1978_23_3_a8/